DOI number: 10.5027/jnrd.v4i0.11

Photo credits: Professor Pua Bar (Kutiel)

[stag_toggle style=”stroke” title=”Authors” state=”open”]
Shira Dickler a* , Meidad Kissinger a

Ben-Gurion University of the Negev, Israel

*Correponding author: dickler@post.bgu.ac.il  [stag_icon icon=”envelope-o” url=”” size=”15px” new_window=”no”][/stag_toggle]

[stag_toggle style=”stroke” title=”Abstract” state=”closed”]

The prevailing global livestock industry relies heavily on natural capital and is responsible for high emissions of greenhouse gases (GHG). In recent years, nations have begun to take more of an active role in measuring their resource inputs and GHG outputs for various products. However, up until now, most nations have been recording data for production, focusing on processes within their geographical boundaries. Some recent studies have suggested the need to also embrace a consumption-based approach. It follows that in an increasingly globalized interconnected world, to be able to generate a sustainable food policy, a full systems approach should be embraced. The case of Israeli meat consumption presents an interesting opportunity for analysis, as the country does not have sufficient resources or the climatic conditions needed to produce enough food to support its population. Therefore, Israel, like a growing number of other countries that are dependent on external resources, relies on imports to meet demand, displacing the environmental impact of meat consumption to other countries. This research utilizes a multi-regional consumption perspective, aiming to measure the carbon and land footprints demanded by Israeli cattle and chicken meat consumption, following both domestic production and imports of inputs and products. The results of this research show that the “virtual land” required for producing meat for consumption in Israel is equivalent to 62% of the geographical area of the country. Moreover, almost 80% of meat consumption is provided by locally produced chicken products but the ecological impact of this source is inconsequential compared to the beef supply chain; beef imports comprise only 13% of meat consumption in Israel but are responsible for 71% of the carbon footprint and 83% of the land footprint. The sources of Israel’s meat supply are currently excluded from environmental impact assessments of Israeli processes. However, they constitute a significant fraction of the system’s natural capital usage, so they must be included in a comprehensive assessment of Israel’s consumption habits.  Only then can policy be created for a sustainable food system, and inter-regional sustainability be achieved.
[/stag_toggle]
[stag_toggle style=”stroke” title=”References” state=”closed”]

[1]        Arce, A.; Marsden, T.K. The social construction of international food: a new research agenda. Economic Geography 1993, 293-311.

[2]      Bouwman, A.; Van der Hoek, K.; Eickhout, B.; Soenario, I. Exploring changes in world ruminant production systems. Agricultural Systems 2005, 84, 121-153.

[3]      Bruins, H. J. Risks to food security: Contingency planning for agri-mega-crises. In I. Helsloot, A. Boin, B. Jacobs & L. K. Comfort (Eds.), Mega-crises: Understanding the prospects, nature, characteristics, and the effects of cataclysmic events (pp. 342-355). Illinois, USA: CC Thomas. 2012.

[4]      Bruinsma, J. World agriculture: towards 2015/2030; An FAO perspective; Earthscan: London, UK, 2003; pp 24-31.

[5]      Carlsson-Kanyama, A. (1998). Climate change and dietary choices—how can emissions of greenhouse gases from food consumption be reduced? Food Policy, 23(3), 277-293.

[6]     Carvalho, P. Country Pasture/Forage Resource Profiles—Brazil. http://www.fao.org/ag/AGP/AGPC/doc/Counprof/Brazil/Brazil.htm (accessed October 2, 2013).

[7]      Cederberg, C.; Meyer, D.; Flysjö, A. Life cycle inventory of greenhouse gas emissions and use of land and energy in Brazilian beef production; SIK-Institutet för livsmedel och bioteknik: Sweden, 2009, pp 51-53.

[8]      Central Bureau of Statistics (Israel). Import of Beef from China 2007-2011. cbs.gov.il (accessed October 29, 2013).

[9]      Chapagain, A. K.; Hoekstra, A. Y. Water footprints of nations. UNESCO. 2004.

[10]     Clapp, J. The distancing of waste: Overconsumption in a global economy. Confronting consumption 2002, 155-176.

[11]     Cordell, D.; Drangert, J.; & White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292-305.

[12]     Cribb, J. The coming famine: the global food crisis and what we can do to avoid it; Univ of California Press: California, USA, 2010; pp 10-13.

[13]     Daly, H. E. Beyond growth: the economics of sustainable development; Beacon Press: Boston, MA, USA, 1997; pp 61-72.

[14]     Daly, H. E.; Czech, B.; Trauger, D. L.; Rees, W. E.; Grover, M.; Dobson, T.; Trombulak, S. C. Are we consuming too much—for what? Conserv. Biol. 2007, 21, 1359-1362.

[15]   Dauvergne, P. Dying of consumption: Accidents or sacrifices of global morality? Global Environ. Polit. 2005, 5, 35-47.

[16]   Dauvergne, P. The shadows of consumption: Consequences for the global environment; MIT Press: Cambridge, MA, USA, 2008; 3-18.

[17]   DECC/DEFRA. 2011 Guidelines to Defra/DECC’s GHG conversion factors for company reporting. Department for Environment, Food and Rural Affairs and Department for Energy and Climate Change, London, 2011.

[18]   Ehrlich, P. R.; Ehrlich, A. H. The population explosion; Simon and Schuster: New York, NY, USA, 1990.

[19]   Eshel, G.; Martin, P. A. Diet, energy, and global warming. Earth Interact. 2006, 10, 1-17.

[20]   FAOStat. faostat.fao.org (accessed September 24, 2013).

[21]      Feed Mill (a). 2013.

[22]      Feed Mill (b). 2013.

[23]      Fiala, N. Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production. Ecol. Econ. 2008, 67, 412-419.

[24]    Frey, S.; Barrett, J. In In Our health, our environment: the ecological footprint of what we eat; International Ecological Footprint Conference, Cardiff; 2007; pp 8-10.

[25]    Galli, A.; Wiedmann, T.; Ercin, E.; Knoblauch, D.; Ewing, B.; Giljum, S. Integrating ecological, carbon and water footprint into a “footprint family” of indicators: Definition and role in tracking human pressure on the planet. Ecol. Ind. 2012, 16, 100-112.

[26]      Gavrieli, R. Personal Interview. 2013.

[27]   Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. 2013.

[28]      Grey, M. A. The industrial food stream and its alternatives in the United States: An introduction. Hum. Organ. 2000, 59, 143-150.

[29]      Gupta, J. Global sustainable food governance and hunger: Traps and tragedies. Br. Food J. 2004, 106, 406-416.

[30]      Haklay, N. Personal Interview. 2013.

[31] Israel Energy Company (IEC). Carbon footprint calculator. Retrieved June 10, 2013, from http://www.iec.co.il/environment/Pages/PollCalculator.aspx.

[32]    Israel Slaughterhouse (a). 2013.

[33]    Israel Slaughterhouse (b). 2013.

[34] Israeli Poultry Division. Quantitative data for chicken meat 2009-2013 [statistics]. Retrieved June 10, 2013 from http://www.ofotm.org.il.

[35]    Jackson, T. Negotiating sustainable consumption: a review of the consumption debate and its policy implications. Energy Environ. 2004, 15, 1027-1051.

[36]      Kastner, T.; Kastner, M.; Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 2011, 70, 1032-1040.

[37]      Kissinger, M. Approaches for calculating a nation’s food ecological footprint—The case of Canada. Ecol. Ind. 2013, 24, 366-374.

[38]    Kissinger, M.; Gottlieb D. Place oriented ecological footprint analysis—The case of Israel’s grain supply. Ecol. Econ.2010, 69, 1639-1645.

[39]    Kissinger, M.; Rees, W. E. Footprints on the prairies: Degradation and sustainability of Canadian agricultural land in a globalizing world. Ecol. Econ. 2009, 68, 2309-2315.

[40]    Kissinger, M.; Rees, W. E.; Timmer, V. Interregional sustainability: governance and policy in an ecologically interdependent world. Environ. Sci. & Policy 2011, 14, 965-976.

[41]      Lang, T. The complexities of globalization: The UK as a case study of tensions within the food system and the challenge to food policy. Agriculture and Human Values 1999, 16, 169-185.

[42]      Lang, T. Diet, health and globalization: five key questions. Proc. Nutr. Soc. 1999, 58, 335-343.

[43]     Leip, A.; Weiss, F.; Wassenaar, T.; Perez, I.; Fellmann, T.; Loudjani, P.; Tubiello, F.; Grandgirard, D.; Monni, S.; Biala, K. Evaluation of the livestock sector’s contribution to the EU greenhouse gas emissions (GGELS)–final report. European Commission, Joint Research Centre 2010.

[44]    Martinez, S. W. Vertical coordination in the pork and broiler industries: Implications for pork and chicken products (No. 34031). United States Department of Agriculture, Economic Research Service. 1999.

[45]     Meier, T.; Christen, O.; Semler, E.; Jahreis, G.; Voget-Kleschin, L.; Schrode, A.; Artmann, M. Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example. Appetite 2014, 74, 20-34.

[46]      Mogensen, L.; Hermansen, J. E.; Halberg, N.; Dalgaard, R.; Vis, J.; Smith, B. G. Life cycle assessment across the food supply chain. Sustainability in the food industry 2009, 35, 115.

[47]    Moss, A. R.; Jouany, J.; Newbold, J. In In Methane production by ruminants: its contribution to global warming; Annales de Zootechnie; Paris: Institut national de la recherche agronomique, 1960-2000.: 2000; Vol. 49, pp 231-254.

[48]     Munksgaard, J.; Pedersen, K. A. CO< sub> 2</sub> accounts for open economies: producer or consumer responsibility? Energy Policy 2001, 29, 327-334.

[49]      OECD. OECD Review of Agricultural Policies: Israel. 2008.

[50]      Pathak, H.; Jain, N.; Bhatia, A.; Patel, J.; Aggarwal, P. Carbon footprints of Indian food items. Agric., Ecosyst. Environ. 2010, 139, 66-73.

[51]      Peters, G. P. From production-based to consumption-based national emission inventories. Ecol. Econ. 2008, 65, 13-23.

[52]    Peters, G. M., Rowley, H. V., Wiedemann, S., Tucker, R., Short, M. D., & Schulz, M. Red meat production in Australia: Life cycle assessment and comparison with overseas studies. Environmental Science & Technology, 2010, 44, 1327-1332.

[53]      Pimentel, D.; Pimentel, M., 2008.Food, energy, and society. CRC Press: Florida, USA, 2008.

[54]   Pinstrup-Andersen, P.; Pandya-Lorch, R. Food Security and Sustainable Use of Natural Resources: A 2020 Vision. Ecological Economics, 1998, 26, 1-10.

[55]      Port World Distance Calculation. http://www.portworld.com/map/ (accessed October 29, 2013).

[56]     Princen, T. Consumption and environment: some conceptual issues. Ecol. Econ. 1999, 31, 347-363.

[57]      Princen, T.; Maniates, M.; Conca, K, 2002.Confronting consumption;The MIT Press, Massachusetts, USA.

[58]     Rees, W. E. Achieving sustainability: reform or transformation? Journal of planning literature. 1995, 9, 343-361.

[59]    Rees, W. E. Ecological footprints and biocapacity: essential elements in sustainability assessment. Renewables-based technology: Sustainability assessment 2006, 143-157.

[60]      Rosegrant, M. W.; Cline, S. A. Global food security: Challenges and policies. Science, 2003 302, 1917-1919.

[61]      Sagee, G. Personal Interview. 2013.

[62]    Scherr, S. J.; Yadav, S. Land degradation in the developing world: Implications for food, agriculture, and the environment to 2020. 1996.

[63]   Schroeder, R.; Aguiar, L. K.; Baines, R. Carbon Footprint in Meat Production and Supply Chains. Journal of Food Science and Engineering 2012, 2, 652-665.

[64]      Schwarzer, S. Growing Greenhouse Gas Emissions Due to Meat Production. UNEP Global Environmental Alert Service 2012.

[65]      Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (eds.), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

[66]      Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; De Haan, C. Livestock’s long shadow; FAO: Rome, Italy, 2006; pp 24-33.

[67]      Subak, S. Global environmental costs of beef production. Ecological Economics 1999. 30, 79-91.

[68]      Tamir, L. Personal Interview. 2013.

[69]      Tzuk-Bar, U. Personal Communication. 2013.

[70]     United Nations Educational Scientific and Cultural Organization (UNESCO) Water a shared responsibility. The United Nations World Water Development 2006, 2.

[71]   Wallén, A.; Brandt, N.; Wennersten, R. Does the Swedish consumer’s choice of food influence greenhouse gas emissions? Environmental Science & Policy 2004. 7, 525-535.

[72]      Weber, C. L.; Matthews, H. S. Food-miles and the relative climate impacts of food choices in the United States. Environ. Sci. Technol. 2008, 42, 3508-3513.

[73]     Williams, A. G.; Audsley, E.; Sandard, D. L. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Defra Research Project ISO205; DEFRA and Cranfield University: Bedford, UK. 2006.

[74]    Williams, A. G.; Pell, E.; Webb, J.; Tribe, E.; Evans, D.; Moorhouse, E.; Watkiss, P. Comparative Life Cycle Assessment of Food Commodities Procured for UK Consumption through a Diversity of Supply Chains. DEFRA Project FO0103. 2007.

[/stag_toggle]

GDE Error: Error retrieving file - if necessary turn off error checking (404:Not Found)

Read More